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Table 1. Incidence of cardiotoxicity in HER2-directed and angiogenesis inhibitor clinical trials

Subclinical decline in

Hypertension

Agent Class Target Malignancy Heart failure ejection fraction ( HO0%) ( Hgradel)
HER2-directed
Trastuzumab mAb ErbB2 ErbB2+ breast cancer, 1.7%—4% (early) [89, 90 2.1%—14% (early) [89] NA
MGC (phase I11) 8.3%—20% (advanced) 16%—-18% (advanced)
[16,91-95]] [16,92-96]
Lapatinib TKI ErbB1, ErbB2 ErbB2+ breast cancer, 0.2% (advanced)[97] 1.4%-5% (advanced) 4% (advanced)[99]
NSCLC (phase Il) [97,98]
Pertuzumab mAb ErbB2 ErbB2+ breast cancer 9% (advanced) [100] 1.2%-54% (advanced) NA
(phase I1) [91, 100-102]
Angiogenesis inhibitors
Bevacizumab mAb VEGF RCC, NSCLC, glioblastoma, 2.2%—-3% (advanced) 2%—-14% (early) [105-107 2%—12% (early)[106, 109]
CRC, breast [103, 104] 0.8%—23.5% (advanced) 17.9%-35% (advanced)
[103, 104, 108]] [103, 104, 110]
Ramucirumab mAb VEGFR RCC (phase Il), breast NA NA 13.5% (advanced) [111]
(phase 1)
Sunitinib TKI VEGFR 1-3, c-kit, RCC, GIST 2.7%-11% (advanced) 4%—47% (advanced) 5%—47% (advanced)
PDGFR [62,112] [62,112] [62,113,114]
Sorafenib TKI VEGFR 2, PDGFR, RCC, melanoma NA 18.9% (advanced)[115] 7.2%—43% (advanced)
Rafl [116-119]
Pazopanib TKI VEGFR, c-kit, PDGFR RCC, breast (phase I1) NA NA 14%—-40% (advanced )
[120,121]
Cediranib TKI VEGFR 1-3, c-kit RCC, breast, and liver (all NA NA 21%—-81% (advanced)
phase Il) [122-124]
Vandetanib TKI VEGFR, EGFR MTC, NSCLC (phase 1), NA NA 14%—-29% (advanced)
mHRPC (phase I) [125-127]
Motesanib TKI VEGFR, PDGFR, c-kit MBC (Phase 1) NA 9% (advanced)[128] 12% (advanced) [128]
Axitinib TKI VEGFR, PDGFR, c-kit Pancreatic, (phase 1), NA 1.8% (advanced)[129] 7%-27.9% (advanced)

MBC (phase 1)

[129,130]

Abbreviations: CRC, colorectal cancer; GIST, gastrointestinal stromal tumor; HF, heart failure; mAb, monoclonal antibody; MBC, metastatic breast
cancer; MGC, metastatic gastric cancer; mHRPC, metastatic hormone-refractory prostate cancer; MTC, metastatic medullary thyroid cancer, NA,
not available; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; TKI, tyrosine kinase inhibitor.

Figure 1. Mechanisms underlying HER2-directed therapy cardiotoxicity. Inhibition of ErbB receptors with HER2-directed therapies im-
pacts numerous signaling pathways resulting in suppression of myofilament protein synthesis via the PI3K-Akt pathway (pathway A),
suppression of protein hypertrophy via the MAPK pathway (pathway B), suppression of cell survival via Src/Fak pathway (pathway C),
suppression of myofilament protein synthesis and upregulation of protein degradation via TGF-B1 and C/EBPf3 signaling (pathway D),
and alterations in cardiac energy metabolism via downregulation of AMPK (pathway E).

Abbreviations: AMPK, AMP-activated protein kinase; C/EBP, CCAAT/enhancer binding protein; Fak, focal adhesion kinase; MAPK,
mitogen-activated protein kinase; Nrg1, Neuregulin-1f3; PI3K, phosphatidylinositol 3-kinase; Smad, small mother against decapentaple-
gic; TGF3, transforming growth factor S.
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Figure 2. Mechanisms underlying modulation of HER2-directed therapy cardiotoxicity through aerobic exercise. Aerobic exercise in-
duces cardioprotection via upregulation of Nrgl synthesis and release, thus activating pathways A—C; inhibition of TGF-B1 and C/EBPS
signaling and upregulation of GATA4 (pathway D); and activation of AMPK expression (pathway E).

Abbreviations: AMPK, AMP-activated protein kinase; C/EBP3, CCAAT/enhancer binding protein; Fak, focal adhesion kinase; MAPK,
mitogen-activated protein kinase; Nrg1, Neuregulin-1[3; PI3K, phosphatidylinositol 3-kinase; Smad, small mother against decapentaple-

gic; TGF3, transforming growth factor 3.

Aerobic exercise may also modulate a number of myocar-
dial intracellular processes, thus overcoming HER2-inhibitor
receptor blockade. McMullen et al. [41, 42] elegantly demon-
strated that exercise increases myocardial Akt, with subse-
quent attenuation of pathologic LV remodeling, fibrosis, and
protein degradation. Whether similar processes occur dur-
ing administration of targeted cancer therapeutics has not
been investigated; however, exercise training increases
myocardial PI3K activity [43] with an effective reduction in
infarct size and cardiomyocyte apoptosis in rats subjected
to myocardial ischemia reperfusion [44], as well as improves
lifespan in mice with dilated cardiomyopathy [45]. These in-
vestigations provide evidence for the protective effects of
PI3K/Aktsignalingin settings of targeted therapy-induced car-
diac stress.

Finally, aerobic exercise inhibits TGF3 and C/EBPf3 signal-
ing to effectively prevent and/or attenuate pathological car-
diac hypertrophy in various mouse models. For instance,
aerobicexercise attenuatesisoprenaline-inducedincreasesin
myocardial levels of TGFBand C/EBPB mRNA, with parallel in-
hibition of pathological myocardial hypertrophy [34]. Exer-
cise-induced reduction of TGFB and C/EBPf3 expression, in
turn, increases both cardiomyocyte size and cell division re-
sulting in physiological hypertrophy [34]. Interestingly, exer-
cise or experimental downregulation of C/EBP expression
has also been shown to upregulate GATA4, a regulator of car-
diomyocyte proliferation during myocardial regeneration in
zebrafish [46]. These data indicate that aerobic exercise inhib-

©AlphaMed Press 2013

its TGF-B1 and C/EBP B expression and upregulates GATA4, ul-
timately leading to modulation of protein degradation and
upregulation of protein synthesis.

In the only human study examining MTTs and exercise to
date, our group found that 16 weeks of supervised aerobic
training failed to attenuate trastuzumab-induced LV dilation
and reduced ejection fraction in patients with HER2-positive
operable breast cancer [47]. This observation is in contrast to
work by us and others demonstrating thataerobictraining can
reverse LVremodelingin patients with stable heartfailure [48,
49]. These discordant findings were likely due to the fact that
participants in the trastuzumab trial attended an insufficient
number of training sessions and did not receive a high enough
training stimulus to achieve beneficial adaptations.

MECHANISMS OF ANGIOGENESIS INHIBITION DIRECTED
THERAPY-INDUCED CARDIAC INJURY

Angiogenesis, the formation of new capillary blood vessels, is
predominantly regulated via vascular endothelial growth fac-
tor (VEGF) and is fundamental for both physiologic and patho-
logic processes (reviewed extensively in references [50, 51]).
VEGF inhibition, alone or in combination with conventional
chemotherapy, is now approved by the FDA as first-line ther-
apy for a broad range of advanced solid malignancies [50]. The
incidence and magnitude of cardiac injury with multitargeted
TKls is particularly high, whereas treatment with monoclonal
mAbs appears to cause comparably less injury (Table 1).
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Figure 3. Mechanisms underlying anti-angiogenic therapy cardiotoxicity. Inhibition of VEGF signaling with tyrosine kinase inhibitor-directed
therapies impacts numerous signaling pathways resulting in inhibition of angiogenesis, and protein synthesis and degradation via the PI3K-
Akt-NO pathway; and inhibition of cell proliferation and differentiation via the MAPK-ERK pathway. Monoclonal inhibitors include bevaci-
zumab and ramucirumab; multikinase inhibitors include sunitinib, axitinib, pazopanib, motesanib, vadetanib, and sorafenib.

Abbreviations: MAPK, mitogen-activated protein kinase; NO, nitric oxide; PI3K, phosphatidylinositol 3-kinase; VEGF, vascular endo-
thelial growth factor.
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Figure4. Mechanisms underlying anti-angiogenic therapy cardiotoxicity through aerobic exercise. Aerobic exercise induces cardiopro-
tection via upregulation of VEGF expression; a nitric oxide-dependant increase in endothelial progenitor cells; and activation of STAT3
resulting in erythropoietin secretion and binding to cardiac progenitor cells, causing differentiation into endothelial cells.

Abbreviations: CPC, cardiac progenitor cells; MAPK, mitogen-activated protein kinase; NO, nitric oxide; PI3K, phosphatidylinositol

3-kinase; EC, endothelial cell; EPO, erythropoietin; VEGF, vascular endothelial growth factor.
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Table 2. Potential future research directions to assess modulation of molecularly targeted therapeutic cardiotoxicity with

aerobic exercise

Underlying mechanisms of MTT-related cardiotoxicity

¢ Elucidate the specific actions of HER2-inhibitors on myocardial Nrgl release and ErbB downstream pathways

e Examine whether anti HER2 agents upregulate myocardial TGFB and C/EBP signaling and consequently downregulate GATA4

signaling

e Determine the effects of anti-angiogenic agents on myocardial and vascular VEGF expression and VEGFR signaling

e Examine the impact of MTT on other tissues, such as skeletal muscle

¢ Delineate the longitudinal cardiac consequences in patients receiving MTTs

Underlying mechanisms of aerobic exercise-induced cardioprotection

e Perform translational exercise-cardiotoxicity studies to elucidate whether aerobic exercise:

e Upregulates myocardial Nrgl and PGC1-« expression

¢ Decreases myocardial TGFB and C/EBP signaling and increases GATA4 signaling

¢ Increases myocardial downstream effector signaling (e.g., endothelial progenitor cell, cardiac progenitor cell)

¢ Evaluate aerobic exercise intensity required to prevent/treat cardiotoxicity

e Establish most effective timing (before, during, or following therapy) to perform aerobic exercise training

e Examine whether integrating resistance and aerobic exercise can protect peripheral as well as central factors

¢ Monitor antineoplastic indices during aerobic exercise training to ensure antineoplastic goals of MTTs are met

Potential Research Models
¢ Neonatal rat ventricular myocytes

Model should be used to examine molecular mechanisms underlying cardiomyocyte hypertrophy, stress, and failure as a result of

MTT-induced toxicity
Zebrafish

Ideal for cardiotoxicity-aerobic exercise studies given that the underlying cardiac development, patterning, genes, functions, and
disease characteristics are similar to humans, and has recently been established as novel exercise model

Knockout/transgenic rodents

Genetically downregulated or upregulated pathways in rodents should be used to establish exercise-induced cardioprotective

signaling pathways

Patient populations

Adequately powered multicenter RCTs with appropriate cardiac endpoints are required to evaluate the relative efficacy of

aerobic exercise training to prevent/treat cardiotoxicity

Abbreviations: MTT, molecularly targeted therapeutic; RCT, randomized controlled trial.

ANTIANGIOGENIC THERAPY INHIBITION OF CARDIAC AND
VASCULAR MOLECULAR SIGNALING

Putative pathways underlying the cardiotoxic properties of
monoclonal and multitargeted agents are illustrated in Figure 3.

Monoclonal Inhibition

Circulating VEGF binds toits receptors platelet derived growth
factor receptor (PDGFR), VEGFR1 (also known as Flt-1), and
VEGFR2 (also known as FIk-1 or KDR). Monoclonal therapeutic
inhibition of the VEGF pathway is achieved via antibodies tar-
geting a VEGF ligand (e.g., bevacizumab binding to VEGF), de-
coy receptors for VEGF (e.g., aflibercept), or antibodies
targeting the extracellular domain of VEGFRs (e.g., ramuci-
rumab binding to VEGFR2), thus limiting endothelial cell
sprouting, migration, proliferation, and tube formation [52].
Of importance, suppression of VEGF/VEGFR signaling causes
pathological alterations in cardiac and vascular tissues [53,
54]. Forinstance, global VEGF knockout in rodents causes em-
bryonic lethality [55], whereas postnatal murine downregula-
tion of myocardial VEGF expression initiates a cascade of
eventsleadingto progressive diastolicand systolic LV dysfunc-
tion [43]. Cardiac-specific VEGF knockout mice display abnor-
mal cardiac muscle capillarity number [56] and classic features

©AlphaMed Press 2013

of cardiomyopathy (i.e., reduced cardiac output, fractional
shortening, decreased dP/dt) [57]. Physiologically, cardiomyo-
cyte binding of VEGF activates Akt, initiating signaling pathways
regulating nitric oxide (NO) synthase, angiogenesis, and progeni-
tor cell differentiation into cardiomyocytes [58—60]. Anti-VEGF
agents likely inhibit vascular NO release, thus promoting vaso-
constriction, increased peripheral resistance, and increased
blood pressure, [53], as well as limiting endothelial progen-
itor cell (EPC) [59] and cardiac progenitor cell (CPC) [61] de-
velopment and ultimately restraining cardiomyocyte
differentiation. Unfortunately, limited clinical data and mech-
anistic information are available to substantiate these poten-
tial pathways.

Multitargeted Inhibition

Multitargeted TKIs may lead to a greater incidence and magni-
tude of cardiotoxicity due to binding of multiple proteins
and/or downstream pathways (Table 1). For instance, Chu et
al.[62] demonstrated that sunitinib, which targets VEGFR1-3,
c-kit, and PDGFR, leads to profound structural and functional
abnormalities in cardiomyocyte mitochondria, leading to a
decrease in ATP production. In addition, blockade of VEGFR2
with TKls decreases endothelial nitric oxide synthase (eNOS)
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Table 3. Future challenges for research investigating the effects of and mechanisms of aerobic exercise in MTT-induced

cardiac toxicity

Preclinical studies

e Many of the available MTTs are humanized agents. Thus, whether the cardiotoxic mechanistic action of these agents is the same
in rodent models is questionable. Investigators should strive to test the murine versions of selected agents whenever possible.

¢ Within available rodent models, strains have inherently different exercise capacities which may also contribute to distinct cardiac
adaptations to exercise training [131, 132]. These disparities may account for discordant findings between investigations.

e Cardio-oncology investigations often use either male or female animals only. However, there are sexually dimorphic
cardiovascular adaptations to exercise training in both mice and rats [133—135], which limits mechanistic implications for either

male or female patients.

e Mechanistic investigations are often conducted in animals that are young and otherwise healthy. In contrast, cancer patients are
typically older with the presence of concomitant comorbidities which exacerbate treatment-induced cardiotoxicity [136].

* No threshold of exercise intensity for inducing observable cardiac adaptations has been identified in any clinical disease [137].
Most animal cardio-oncology exercise studies utilize continuous treadmill running characterized by fixed speed, inclination, and
duration[138]. Elucidation of the dose-response relationship of exercise on cardiac function in rodents and how this translates to

the clinical setting are urgently required.
Clinical studies

e Qvert cardiac events are relatively uncommon in cancer patients receiving MTTs; asymptomatic events are more frequent.
Nevertheless, given the current event rate with standard detection techniques, large trials will be required to examine the effect
of exercise on reducing the event rate. This issue could be somewhat addressed using biomarker enriched trials in which patients
only at high-risk of events are recruited. Established biomarkers to identify such high-risk patients are not yet available but

currently under investigation [8].

e Cancer patients typically receive MTTs in combination with other agents, particularly cytotoxic agents, possibly confounding the
effects of exercise on MTT-induced cardiotoxicity [ 139], making interpretation challenging.

e Although numerous studies have demonstrated excellent adherence and safety profiles with moderate intensity exercise [140],
no studies to date have examined whether patients receiving MTTs can successfully adhere or tolerate structured exercise
training prescriptions incorporating moderate or high intensity training.

e The clinical impact of exercise on the antitumor efficacy of MTTs in patients is unknown. Investigations determining the
interaction between exercise and tumor outcomes are critical in both rodent and human studies [ 141].

Abbreviations: MTT, molecularly targeted therapeutic.

activationand NO release, promoting vasoconstriction and in-
creased blood pressure [63]. Of significance, the combined
cardiac and vascular injury may enhance the severity of car-
diacinjury. Izumiya et al. [64] demonstrated that VEGF inhibi-
tion contributed to progression from compensatory cardiac
hypertrophy to LV failure under hypertensive conditions.
Chronic hypertension ultimately leads to a compensatory in-
crease in myocardial muscle mass to maintain normal cardiac
output [65]. In both hypertensive and pre-hypertensive
states, there is slow but steady hypertrophy of the LV [66],
leading to a decreased ability to relax initially during exercise
and subsequently at rest [67]. Whether concentric remodel-
ing occurs in patients receiving antiangiogenic therapies has
not been investigated.

AEROBIC EXERCISE-INDUCED CARDIOPROTECTION FROM
ANGIOGENESIS INHIBITION

Aerobic exercise-induced increase in vascular and myocardial
VEGF/VEGFR signaling may prevent/treat antiangiogenesis-
induced cardiotoxicity. These conceptual pathways are illus-
trated in Figure 4. Upregulation of myocardial VEGF using
naked DNA gene therapy enhances capillary density and de-
creases endothelial celland cardiomyocyte apoptosis, leading
to improvements in cardiac function in a diabetic rat model
[43]. Aerobic exercise augments the aging-induced [68] and
infarct-induced [69] decrease in VEGF mRNA and protein ex-
pression in murine cardiac tissue. Increased VEGF expression
occursvia upstream peroxisome proliferator-activated recep-
tor-y coactivator-1a (PGC-1a) through the transcription fac-
tor estrogen-related receptor-a and is independent of

www.TheOncologist.com

hypoxia-inducible factor 1a-induced VEGF expression [70].
Aerobic exercise rapidly upregulates PGC-1a mRNA in skeletal
muscle, with aconcomitantincrease in mitochondrial content
leading to resistance to fatigue and a higher number of oxida-
tive fibers [71]. Thus, because PGC-1« is obligatory for the ex-
ercise-induced increase in VEGF expression, it is evident that
PGC-1« has a particularly prominent role in regulating train-
ing-induced VEGF expression.

An additional putative cardioprotective mechanism is ex-
ercise-induced augmentation in the production and mobiliza-
tion of CPCs and EPCs via acute increases in interleukin-6 (IL-
6), NO, and VEGF-dependent mechanisms [72—-74]. Aerobic

Aerobic exercise rapidly upregulates PGC-1a mRNA
in skeletal muscle, with a concomitant increase in mi-
tochondrial content leading to resistance to fatigue
and a higher number of oxidative fibers. Thus, be-
cause PGC-1« is obligatory for the exercise-induced
increase in VEGF expression, itis evident that PGC-1«
has a particularly prominent role in regulating train-
ing-induced VEGF expression.

exercise leads to an NO-dependent increase in circulating
EPCs in mice and humans [72], thus contributing to neovascu-
larization and vascular repair, leading toimproved endothelial
function and myocardium recovery after ischemia [75-78].
IL-6 also plays multiple functions in angiogenesis and vascular

©AlphaMed Press 2013
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remodeling and may stimulate EPC proliferation, migration,
and tube formation following exercise [73, 79].

Importantly, this upregulation in EPCs and CPCs has been
implicated in cardiomyocyte healing processes. Kolwicz et al.
[80] found that exercise increased CPC proliferation by
~200% and augmented the presence of KIT-positive cells (a
stem cell factor crucial for the mobilization of progenitor cells
tosites of injury) in the heart. Together with signal transducer
and activator of transcription 3 (STAT3), this exercise-induced
increase in CPC proliferation may play a key role in cardiomy-
ocyte proliferation, differentiation, and survival [81]. STAT3
activation has been shown to mediate cardiac hypertrophy
and protect cells in response to cardiomyopathy induced by
ischemia or drug treatment [82—84]. Significantly, exercise in-
creases STAT3 activation [85, 86], causing release of erythro-
poietin into the cardiac microenvironment that, in turn, binds
to CPCs, causing differentiationinto endothelial cells [87]. Pre-
sumably, these endothelial cells can then be activated by
VEGF to express matrix metalloproteinases, which degrade
the vascular basement membrane to form new capillary net-
works [88]. Collectively, we speculate that aerobic exercise
may increase PGC-1a and VEGF secretion and STAT3 activa-
tion, with the resultant release, mobilization, and homing of
CPCs during angiogenesis inhibitor therapy.

CONCLUSION

Molecularly targeted therapeutics are the future of cancer
systemic therapy; they have already moved from palliative
therapy for advanced solid malignancies into the setting of cu-
rative-intent treatment for early-stage disease. Cardiotoxicity
is a frequent and potentially serious adverse complication of
some targeted therapies, leading to a broad range of poten-
tially life-threatening complications, therapy discontinuation,
and poor quality of life. Low-cost, multitargeted interventions
aretherefore urgently required to mitigate these adverse con-
sequences. Evidence reviewed here indicates that aerobic ex-
ercise is a nontoxic, pleiotropic therapy that affects diverse
cardiac signaling pathways implicated in the cardiotoxicity in-
duced by anti-HER2 and antiangiogenic therapy. It is impor-
tant to stress that the current evidence base is emergent with
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