






Figure 1. Mechanisms underlying HER2-directed therapy cardiotoxicity. Inhibition of ErbB receptorswith HER2-directed therapies im-
pacts numerous signaling pathways resulting in suppression of myofilament protein synthesis via the PI3K-Akt pathway (pathway A),
suppression of protein hypertrophy via the MAPK pathway (pathway B), suppression of cell survival via Src/Fak pathway (pathway C),
suppression of myofilament protein synthesis and upregulation of protein degradation via TGF-�1 and C/EBP� signaling (pathway D),
and alterations in cardiac energymetabolism via downregulation of AMPK (pathway E).

Abbreviations: AMPK, AMP-activated protein kinase; C/EBP�, CCAAT/enhancer binding protein; Fak, focal adhesion kinase;MAPK,
mitogen-activatedprotein kinase;Nrg1,Neuregulin-1�; PI3K, phosphatidylinositol 3-kinase; Smad, smallmotheragainstdecapentaple-
gic; TGF�, transforming growth factor�.

Table 1. Incidence of cardiotoxicity in HER2-directed and angiogenesis inhibitor clinical trials

Agent Class Target Malignancy Heart failure
Subclinical decline in
ejection fraction (�H10%)

Hypertension
(�Hgrade I)

HER2-directed

Trastuzumab mAb ErbB2 ErbB2� breast cancer,
MGC (phase III)

1.7%–4% (early) �89, 90
8.3%–20% (advanced)
�16, 91–95��

2.1%–14% (early) �89�
16%–18% (advanced)
�16, 92–96�

NA

Lapatinib TKI ErbB1, ErbB2 ErbB2� breast cancer,
NSCLC (phase II)

0.2% (advanced) �97� 1.4%–5% (advanced)
�97, 98�

4% (advanced) �99�

Pertuzumab mAb ErbB2 ErbB2� breast cancer
(phase II)

9% (advanced) �100� 1.2%–54% (advanced)
�91, 100–102�

NA

Angiogenesis inhibitors

Bevacizumab mAb VEGF RCC, NSCLC, glioblastoma,
CRC, breast

2.2%–3% (advanced)
�103, 104�

2%–14% (early) �105–107
0.8%–23.5% (advanced)
�103, 104, 108��

2%–12% (early) �106, 109�
17.9%–35% (advanced)
�103, 104, 110�

Ramucirumab mAb VEGFR RCC (phase II), breast
(phase III)

NA NA 13.5% (advanced) �111�

Sunitinib TKI VEGFR 1–3, c-kit,
PDGFR

RCC, GIST 2.7%–11% (advanced)
�62, 112�

4%–47% (advanced)
�62, 112�

5%–47% (advanced)
�62, 113, 114�

Sorafenib TKI VEGFR 2, PDGFR,
Raf1

RCC,melanoma NA 18.9% (advanced) �115� 7.2%–43% (advanced)
�116–119�

Pazopanib TKI VEGFR, c-kit, PDGFR RCC, breast (phase II) NA NA 14%–40% (advanced )
�120, 121�

Cediranib TKI VEGFR 1–3, c-kit RCC, breast, and liver (all
phase II)

NA NA 21%–81% (advanced)
�122–124�

Vandetanib TKI VEGFR, EGFR MTC, NSCLC (phase III),
mHRPC (phase II)

NA NA 14%–29% (advanced)
�125–127�

Motesanib TKI VEGFR, PDGFR, c-kit MBC (Phase II) NA 9% (advanced) �128� 12% (advanced) �128�

Axitinib TKI VEGFR, PDGFR, c-kit Pancreatic, (phase III),
MBC (phase II)

NA 1.8% (advanced) �129� 7%–27.9% (advanced)
�129, 130�

Abbreviations: CRC, colorectal cancer; GIST, gastrointestinal stromal tumor; HF, heart failure;mAb,monoclonal antibody;MBC,metastatic breast
cancer;MGC,metastatic gastric cancer;mHRPC,metastatic hormone-refractory prostate cancer;MTC,metastaticmedullary thyroid cancer, NA,
not available; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; TKI, tyrosine kinase inhibitor.
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Aerobic exercisemay alsomodulate a number ofmyocar-
dial intracellular processes, thus overcoming HER2-inhibitor
receptor blockade.McMullen et al. [41, 42] elegantly demon-
strated that exercise increases myocardial Akt, with subse-
quent attenuation of pathologic LV remodeling, fibrosis, and
protein degradation. Whether similar processes occur dur-
ing administration of targeted cancer therapeutics has not
been investigated; however, exercise training increases
myocardial PI3K activity [43] with an effective reduction in
infarct size and cardiomyocyte apoptosis in rats subjected
to myocardial ischemia reperfusion [44], as well as improves
lifespan in mice with dilated cardiomyopathy [45]. These in-
vestigations provide evidence for the protective effects of
PI3K/Akt signaling insettingsof targetedtherapy-inducedcar-
diac stress.

Finally, aerobic exercise inhibits TGF� and C/EBP� signal-
ing to effectively prevent and/or attenuate pathological car-
diac hypertrophy in various mouse models. For instance,
aerobicexerciseattenuates isoprenaline-induced increases in
myocardial levels of TGF� andC/EBP�mRNA,with parallel in-
hibition of pathological myocardial hypertrophy [34]. Exer-
cise-induced reduction of TGF� and C/EBP� expression, in
turn, increases both cardiomyocyte size and cell division re-
sulting in physiological hypertrophy [34]. Interestingly, exer-
cise or experimental downregulation of C/EBP� expression
has also been shown to upregulate GATA4, a regulator of car-
diomyocyte proliferation during myocardial regeneration in
zebrafish [46]. Thesedata indicate that aerobic exercise inhib-

its TGF-�1andC/EBP�expressionandupregulatesGATA4, ul-
timately leading to modulation of protein degradation and
upregulation of protein synthesis.

In the only human study examining MTTs and exercise to
date, our group found that 16 weeks of supervised aerobic
training failed to attenuate trastuzumab-induced LV dilation
and reduced ejection fraction in patients with HER2-positive
operable breast cancer [47]. This observation is in contrast to
workbyusandothersdemonstrating thataerobic trainingcan
reverseLVremodeling inpatientswithstableheart failure [48,
49]. These discordant findings were likely due to the fact that
participants in the trastuzumab trial attended an insufficient
number of training sessions anddid not receive a high enough
training stimulus to achieve beneficial adaptations.

MECHANISMS OFANGIOGENESIS INHIBITIONDIRECTED
THERAPY-INDUCED CARDIAC INJURY
Angiogenesis, the formation of new capillary blood vessels, is
predominantly regulated via vascular endothelial growth fac-
tor (VEGF) and is fundamental for bothphysiologic andpatho-
logic processes (reviewed extensively in references [50, 51]).
VEGF inhibition, alone or in combination with conventional
chemotherapy, is now approved by the FDA as first-line ther-
apy for abroad rangeof advancedsolidmalignancies [50]. The
incidence andmagnitude of cardiac injury withmultitargeted
TKIs is particularly high, whereas treatment with monoclonal
mAbs appears to cause comparably less injury (Table 1).

Figure 2. Mechanisms underlying modulation of HER2-directed therapy cardiotoxicity through aerobic exercise. Aerobic exercise in-
duces cardioprotection via upregulation of Nrg1 synthesis and release, thus activating pathways A–C; inhibition of TGF-�1 and C/EBP�
signaling and upregulation of GATA4 (pathway D); and activation of AMPK expression (pathway E).

Abbreviations: AMPK, AMP-activated protein kinase; C/EBP�, CCAAT/enhancer binding protein; Fak, focal adhesion kinase;MAPK,
mitogen-activatedprotein kinase;Nrg1,Neuregulin-1�; PI3K, phosphatidylinositol 3-kinase; Smad, smallmotheragainstdecapentaple-
gic; TGF�, transforming growth factor�.
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Figure 3. Mechanismsunderlying anti-angiogenic therapy cardiotoxicity. InhibitionofVEGF signalingwith tyrosine kinase inhibitor-directed
therapies impacts numerous signaling pathways resulting in inhibition of angiogenesis, and protein synthesis and degradation via the PI3K-
Akt-NO pathway; and inhibition of cell proliferation and differentiation via theMAPK-ERK pathway. Monoclonal inhibitors include bevaci-
zumaband ramucirumab;multikinase inhibitors include sunitinib, axitinib, pazopanib,motesanib, vadetanib, and sorafenib.

Abbreviations:MAPK,mitogen-activated protein kinase; NO, nitric oxide; PI3K, phosphatidylinositol 3-kinase; VEGF, vascular endo-
thelial growth factor.

Figure4. Mechanismsunderlying anti-angiogenic therapy cardiotoxicity throughaerobic exercise. Aerobic exercise induces cardiopro-
tection via upregulation of VEGF expression; a nitric oxide-dependant increase in endothelial progenitor cells; and activation of STAT3
resulting in erythropoietin secretion and binding to cardiac progenitor cells, causing differentiation into endothelial cells.

Abbreviations: CPC, cardiac progenitor cells; MAPK, mitogen-activated protein kinase; NO, nitric oxide; PI3K, phosphatidylinositol
3-kinase; EC, endothelial cell; EPO, erythropoietin; VEGF, vascular endothelial growth factor.
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ANTIANGIOGENIC THERAPY INHIBITION OF CARDIAC AND
VASCULARMOLECULAR SIGNALING
Putative pathways underlying the cardiotoxic properties of
monoclonal andmultitargetedagents are illustrated inFigure3.

Monoclonal Inhibition
CirculatingVEGFbinds to its receptorsplateletderivedgrowth
factor receptor (PDGFR), VEGFR1 (also known as Flt-1), and
VEGFR2 (also knownas Flk-1orKDR).Monoclonal therapeutic
inhibition of the VEGF pathway is achieved via antibodies tar-
geting a VEGF ligand (e.g., bevacizumab binding to VEGF), de-
coy receptors for VEGF (e.g., aflibercept), or antibodies
targeting the extracellular domain of VEGFRs (e.g., ramuci-
rumab binding to VEGFR2), thus limiting endothelial cell
sprouting, migration, proliferation, and tube formation [52].
Of importance, suppression of VEGF/VEGFR signaling causes
pathological alterations in cardiac and vascular tissues [53,
54]. For instance, global VEGF knockout in rodents causes em-
bryonic lethality [55],whereas postnatalmurine downregula-
tion of myocardial VEGF expression initiates a cascade of
events leading toprogressivediastolicandsystolic LVdysfunc-
tion [43]. Cardiac-specific VEGF knockoutmice display abnor-
malcardiacmusclecapillaritynumber [56]andclassic features

of cardiomyopathy (i.e., reduced cardiac output, fractional
shortening, decreased dP/dt) [57]. Physiologically, cardiomyo-
cyte binding of VEGF activates Akt, initiating signaling pathways
regulatingnitricoxide (NO)synthase,angiogenesis, andprogeni-
tor cell differentiation into cardiomyocytes [58–60]. Anti-VEGF
agents likely inhibit vascular NO release, thus promoting vaso-
constriction, increased peripheral resistance, and increased
blood pressure, [53], as well as limiting endothelial progen-
itor cell (EPC) [59] and cardiac progenitor cell (CPC) [61] de-
velopment and ultimately restraining cardiomyocyte
differentiation.Unfortunately, limited clinical data andmech-
anistic information are available to substantiate these poten-
tial pathways.

Multitargeted Inhibition
MultitargetedTKIsmay lead toagreater incidenceandmagni-
tude of cardiotoxicity due to binding of multiple proteins
and/or downstream pathways (Table 1). For instance, Chu et
al. [62]demonstrated that sunitinib,which targetsVEGFR1–3,
c-kit, and PDGFR, leads to profound structural and functional
abnormalities in cardiomyocyte mitochondria, leading to a
decrease in ATP production. In addition, blockade of VEGFR2
with TKIs decreases endothelial nitric oxide synthase (eNOS)

Table 2. Potential future research directions to assessmodulation ofmolecularly targeted therapeutic cardiotoxicity with

aerobic exercise

Underlyingmechanisms ofMTT-related cardiotoxicity

• Elucidate the specific actions of HER2-inhibitors onmyocardial Nrg1 release and ErbB downstreampathways

• Examinewhether anti HER2 agents upregulatemyocardial TGF� and C/EBP� signaling and consequently downregulate GATA4
signaling

• Determine the effects of anti-angiogenic agents onmyocardial and vascular VEGF expression and VEGFR signaling

• Examine the impact ofMTT on other tissues, such as skeletal muscle

• Delineate the longitudinal cardiac consequences in patients receivingMTTs

Underlyingmechanisms of aerobic exercise-induced cardioprotection

• Perform translational exercise-cardiotoxicity studies to elucidatewhether aerobic exercise:

• Upregulatesmyocardial Nrg1 and PGC1-� expression

• Decreasesmyocardial TGF� and C/EBP� signaling and increases GATA4 signaling

• Increasesmyocardial downstream effector signaling (e.g., endothelial progenitor cell, cardiac progenitor cell)

• Evaluate aerobic exercise intensity required to prevent/treat cardiotoxicity

• Establishmost effective timing (before, during, or following therapy) to perform aerobic exercise training

• Examinewhether integrating resistance and aerobic exercise can protect peripheral as well as central factors

• Monitor antineoplastic indices during aerobic exercise training to ensure antineoplastic goals ofMTTs aremet

Potential ResearchModels

• Neonatal rat ventricularmyocytes

Model should be used to examinemolecularmechanisms underlying cardiomyocyte hypertrophy, stress, and failure as a result of
MTT-induced toxicity

• Zebrafish

Ideal for cardiotoxicity-aerobic exercise studies given that the underlying cardiac development, patterning, genes, functions, and
disease characteristics are similar to humans, and has recently been established as novel exercisemodel

• Knockout/transgenic rodents

Genetically downregulated or upregulated pathways in rodents should be used to establish exercise-induced cardioprotective
signaling pathways

• Patient populations

Adequately poweredmulticenter RCTswith appropriate cardiac endpoints are required to evaluate the relative efficacy of
aerobic exercise training to prevent/treat cardiotoxicity

Abbreviations:MTT,molecularly targeted therapeutic; RCT, randomized controlled trial.
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activationandNOrelease,promotingvasoconstrictionand in-
creased blood pressure [63]. Of significance, the combined
cardiac and vascular injury may enhance the severity of car-
diac injury. Izumiya et al. [64] demonstrated that VEGF inhibi-
tion contributed to progression from compensatory cardiac
hypertrophy to LV failure under hypertensive conditions.
Chronic hypertension ultimately leads to a compensatory in-
crease inmyocardial musclemass tomaintain normal cardiac
output [65]. In both hypertensive and pre-hypertensive
states, there is slow but steady hypertrophy of the LV [66],
leading to a decreased ability to relax initially during exercise
and subsequently at rest [67]. Whether concentric remodel-
ing occurs in patients receiving antiangiogenic therapies has
not been investigated.

AEROBIC EXERCISE-INDUCED CARDIOPROTECTION FROM
ANGIOGENESIS INHIBITION
Aerobic exercise-induced increase in vascular andmyocardial
VEGF/VEGFR signaling may prevent/treat antiangiogenesis-
induced cardiotoxicity. These conceptual pathways are illus-
trated in Figure 4. Upregulation of myocardial VEGF using
naked DNA gene therapy enhances capillary density and de-
creasesendothelial cell andcardiomyocyteapoptosis, leading
to improvements in cardiac function in a diabetic rat model
[43]. Aerobic exercise augments the aging-induced [68] and
infarct-induced [69] decrease in VEGF mRNA and protein ex-
pression in murine cardiac tissue. Increased VEGF expression
occurs viaupstreamperoxisomeproliferator-activated recep-
tor-� coactivator-1� (PGC-1�) through the transcription fac-
tor estrogen-related receptor-� and is independent of

hypoxia-inducible factor 1�-induced VEGF expression [70].
Aerobicexercise rapidlyupregulatesPGC-1�mRNAinskeletal
muscle,witha concomitant increase inmitochondrial content
leading to resistance to fatigue and a higher number of oxida-
tive fibers [71]. Thus, because PGC-1� is obligatory for the ex-
ercise-induced increase in VEGF expression, it is evident that
PGC-1� has a particularly prominent role in regulating train-
ing-induced VEGF expression.

An additional putative cardioprotective mechanism is ex-
ercise-induced augmentation in the production andmobiliza-
tion of CPCs and EPCs via acute increases in interleukin-6 (IL-
6), NO, and VEGF-dependent mechanisms [72–74]. Aerobic

exercise leads to an NO-dependent increase in circulating
EPCs inmice and humans [72], thus contributing to neovascu-
larizationandvascular repair, leading to improvedendothelial
function and myocardium recovery after ischemia [75–78].
IL-6 also playsmultiple functions in angiogenesis and vascular

Aerobic exercise rapidly upregulates PGC-1� mRNA
in skeletalmuscle,with a concomitant increase inmi-
tochondrial content leading to resistance to fatigue
and a higher number of oxidative fibers. Thus, be-
cause PGC-1� is obligatory for the exercise-induced
increase inVEGFexpression, it is evident that PGC-1�
has a particularly prominent role in regulating train-
ing-induced VEGF expression.

Table 3. Future challenges for research investigating the effects of and mechanisms of aerobic exercise in MTT-induced

cardiac toxicity

Preclinical studies

• Many of the availableMTTs are humanized agents. Thus, whether the cardiotoxicmechanistic action of these agents is the same
in rodentmodels is questionable. Investigators should strive to test themurine versions of selected agents whenever possible.

• Within available rodentmodels, strains have inherently different exercise capacities whichmay also contribute to distinct cardiac
adaptations to exercise training �131, 132�. These disparitiesmay account for discordant findings between investigations.

• Cardio-oncology investigations often use eithermale or female animals only. However, there are sexually dimorphic
cardiovascular adaptations to exercise training in bothmice and rats �133–135�, which limitsmechanistic implications for either
male or female patients.

• Mechanistic investigations are often conducted in animals that are young and otherwise healthy. In contrast, cancer patients are
typically older with the presence of concomitant comorbidities which exacerbate treatment-induced cardiotoxicity �136�.

• No threshold of exercise intensity for inducing observable cardiac adaptations has been identified in any clinical disease �137�.
Most animal cardio-oncology exercise studies utilize continuous treadmill running characterized by fixed speed, inclination, and
duration �138�. Elucidation of the dose-response relationship of exercise on cardiac function in rodents and how this translates to
the clinical setting are urgently required.

Clinical studies

• Overt cardiac events are relatively uncommon in cancer patients receivingMTTs; asymptomatic events aremore frequent.
Nevertheless, given the current event ratewith standard detection techniques, large trials will be required to examine the effect
of exercise on reducing the event rate. This issue could be somewhat addressed using biomarker enriched trials in which patients
only at high-risk of events are recruited. Established biomarkers to identify such high-risk patients are not yet available but
currently under investigation �8�.

• Cancer patients typically receiveMTTs in combinationwith other agents, particularly cytotoxic agents, possibly confounding the
effects of exercise onMTT-induced cardiotoxicity �139�, making interpretation challenging.

• Although numerous studies have demonstrated excellent adherence and safety profiles withmoderate intensity exercise �140�,
no studies to date have examinedwhether patients receivingMTTs can successfully adhere or tolerate structured exercise
training prescriptions incorporatingmoderate or high intensity training.

• The clinical impact of exercise on the antitumor efficacy ofMTTs in patients is unknown. Investigations determining the
interaction between exercise and tumor outcomes are critical in both rodent and human studies �141�.

Abbreviations:MTT,molecularly targeted therapeutic.
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remodeling and may stimulate EPC proliferation, migration,
and tube formation following exercise [73, 79].

Importantly, this upregulation in EPCs and CPCs has been
implicated in cardiomyocyte healing processes. Kolwicz et al.
[80] found that exercise increased CPC proliferation by
�200% and augmented the presence of KIT-positive cells (a
stem cell factor crucial for themobilization of progenitor cells
to sites of injury) in the heart. Togetherwith signal transducer
and activator of transcription 3 (STAT3), this exercise-induced
increase in CPC proliferationmay play a key role in cardiomy-
ocyte proliferation, differentiation, and survival [81]. STAT3
activation has been shown to mediate cardiac hypertrophy
and protect cells in response to cardiomyopathy induced by
ischemiaordrug treatment [82–84]. Significantly, exercise in-
creases STAT3 activation [85, 86], causing release of erythro-
poietin into the cardiacmicroenvironment that, in turn, binds
toCPCs,causingdifferentiation intoendothelial cells [87].Pre-
sumably, these endothelial cells can then be activated by
VEGF to express matrix metalloproteinases, which degrade
the vascular basement membrane to form new capillary net-
works [88]. Collectively, we speculate that aerobic exercise
may increase PGC-1� and VEGF secretion and STAT3 activa-
tion, with the resultant release, mobilization, and homing of
CPCs during angiogenesis inhibitor therapy.

CONCLUSION
Molecularly targeted therapeutics are the future of cancer
systemic therapy; they have already moved from palliative
therapy for advanced solidmalignancies into the settingof cu-
rative-intent treatment for early-stagedisease. Cardiotoxicity
is a frequent and potentially serious adverse complication of
some targeted therapies, leading to a broad range of poten-
tially life-threatening complications, therapydiscontinuation,
andpoorquality of life. Low-cost,multitargeted interventions
arethereforeurgently requiredtomitigatetheseadversecon-
sequences. Evidence reviewed here indicates that aerobic ex-
ercise is a nontoxic, pleiotropic therapy that affects diverse
cardiac signaling pathways implicated in the cardiotoxicity in-
duced by anti-HER2 and antiangiogenic therapy. It is impor-
tant to stress that the current evidence base is emergentwith

asmall numberof studies;manyareasofMTT-inducedcardio-
toxicity remain tobedefinedandaddressed.A summaryof fu-
ture investigations needed to define the nature and
magnitude of the cardioprotective effects of exercise in the
setting ofMTT is provided in Table 2. Future challenges for re-
search investigating the effects of aerobic exercise in MTT-
induced cardiac toxicity are provided in Table 3.

Although clinical and research interest in aerobic exercise
has increaseddramatically over the past decade, amore thor-
ough understanding of themyocardial signaling pathways ac-
tivated by exercise will be needed to improve cardiovascular
outcomes. Collectively, such researchwill lead tomechanisti-
cally driven clinical trials. Importantly, adequately powered
multicenter randomized controlled trials are required to eval-
uate the relative efficacy of aerobic exercise training to pre-
vent/treat cardiotoxicity. These investigations, in turn, will
inform exercise prescription rehabilitation guidelines for pa-
tientswith cancer,whereby themost effective exercise inten-
sity and timing (before, during, or following therapy) are
established.Weanticipate that exercisewill complementmo-
lecularly targeted therapeutics to improve thehealth and lon-
gevity of patients with solidmalignancies.
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